鋼筋混凝土梁和柱性能界限狀態(tài)及其變形限值
蔣歡軍,王斌,呂西林
- 摘 要
-
(同濟大學土木工程防災國家重點實驗室,上海 200092)[摘要]根據(jù)以受彎為主的鋼筋混凝土梁、柱的地震破壞過程提出了各性能水平和性能界限狀態(tài)的劃分標準,并建立了對應于各性能界限狀態(tài)的變形計算方法。通過對梁、柱截面的彎矩-曲率分析,分別建立了梁、柱截面受壓區(qū)高度的計算方法。利用對美國太平洋地震工程研究中心建立的鋼筋混凝土柱試驗數(shù)據(jù)庫的統(tǒng)計分析和鋼筋混凝土受彎構件的塑性鉸理論,提出了柱在各性能界限狀態(tài)時截面壓區(qū)邊緣混凝土的應變限值計算方法。通過混凝土受壓應變和鋼筋受拉應變的限值得到鋼筋混凝土梁、柱的變形限值。研究結果可為鋼筋混凝土結構基于位移的抗震設計和抗震性能評價提供依據(jù)。[關鍵詞]基于位移的抗震設計;鋼筋混凝土;梁;柱;地震損傷Performance limit states and deformation limits of RC beams and columnsJiang Huanjun, Wang Bin, Lü Xilin(State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China)Abstract:The criterion to classify the performance levels and performance limit states are proposed for flexure-dominant reinforced concrete(RC) beams and columns according to the seismic damage process. The method to estimate the deformation limits corresponding to these limit states is developed. The formulas are derived to estimate the compression zone depth of beam and column section respectively. The strain limit of the extreme compression fiber of column section at individual performance limit state is obtained on the basis of the plastic-hinge method suitable for flexure-critical RC structural members and statistical analysis on the database containing the results of cyclic tests on RC columns assembled at the Pacific Earthquake Engineering Research Center (PEER) in USA. Through the limits applied on concrete compression strain and steel tensile strain, the deformation limits on RC beams and columns are developed. The research results can be utilized for displacement-based seismic design and seismic performance evaluation of RC structures.Keywords:displacement-based seismic design; reinforced concrete; beam; column; seismic damage*國家自然科學基金項目(50708081,90815029);上海市浦江人才計劃項目(08PJ1409900)。作者簡介:蔣歡軍,博士,副研究員,Email:jhj73@#edu.cn。參考文獻[1]PRIESTLEY M J N. Performance based seismic design[C]//Proceedings of 12th World Conference on Earthquake Engineering, 2000:2831.[2]PANAGIOTAKOS T B,F(xiàn)ARDIS M N. Deformations of reinforced concrete members at yielding and ultimate[J]. ACI Structural Journal, 2001, 98(2): 135-147.[3]LI B,PARK R. Confining reinforcement for high-strength concrete columns[J]. ACI Structural Journal, 2004, 101(3): 314-324.[4]MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress strain model for confined concrete[J]. Journal of Structural Engineering ASCE, 1988, 114(8): 1804-1826.[5]KOWALSKY M J. Deformation limit states for circular reinforced concrete bridge columns[J]. Journal of Structural Engineering, 2000, 126(8): 869-878.[6]BERRY M, PARRISH M, EBERHARD M. PEER Structural performance database user’s manual[DB]. http://nisee.berkeley.edu/spd/,2004.[7]BERRY M,EBERHARD M. Estimating flexural damage in reinforced concrete columns[R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2003.[8]PRIESTLEY M J N. Brief comments on elastic flexibility of reinforcement concrete frames and significance to seismic design[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1998, 31(4): 246-259.[9]PAULAY T,PRIESTLY M J N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. John Wiley & Sons, Inc. New York, 1992.